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6. Conclusion 

Our X-ray investigations on a-CuNSal have shown a 
reversible and continuous structural phase transition 
from a commensurate to an incommensurate ortho- 
rhombic phase at T i = 303 K and a reversible 
first-order phase transition into a monoclinic 
commensurate phase at 241 K. There also exists an 
intense temperature-dependent diffuse scattering along 
a* and we assume that it is caused by dynamic atomic 
movements associated with the phase transition at T r 
Within the incommensurate phase we observe a 
pronounced diffuse scattering around the satellite 
reflections which is explained by phase fluctuations of 
the modulation wave. The results are discussed within 
the frame of a simple model assuming equal am- 
plitudes of the modulation wave for all atoms of the 
chelate molecule. 

At the moment refinements of the structures within 
the three phases are performed and we hope that these 
investigations will supply important information on the 
dynamic processes at the phase transition. 

This project was supported by the Deutsche For- 
schungsgemeinschaft, Projekt Ja 15/32, Ja 15/34. 
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Abstract 

A method for determining the polarization factor for a 
repeatedly reflected X-ray beam is described. It is 
shown that, provided the relative orientations of the 
pre-specimen reflectors are restricted to special geom- 
etries (the usual cases), the appropriate expression for 
an unpolarized beam reflected m times can be simply 
derived. The treatment is extended to a plane-polarized 
beam, resulting in an expression dependent on 
polarization effects from the specimen alone and hence 
independent of the state of perfection of crystal 
monochromators. The latter expression may have some 
relevance to experiments performed with synchrotron 
radiation. 

Many of the techniques used today for measuring 
X-ray diffraction data have as an integral part of their 

instrumentation a system of pre-reflectors, reflecting the 
beam before diffraction by the specimen takes place. 
Such systems may include one or more crystal 
monochromators and/or focusing mirrors, usually 
serving either to select a particular wavelength of 
radiation or to produce a convergent beam of X-rays. 
The common feature of most - if not all - these 
arrangements is the relative orientations of the pre- 
specimen reflectors with respect to one another and, in 
some cases, to the specimen itself. These geometries are 
restricted to two types: those in which the diffraction 
plane (the plane containing the incident and reflected 
beams) of the ith reflector is parallel to the diffraction 
plane of the first reflector (p = 0 ° geometry), and those 
in which the diffraction planes of the first and /th 
reflectors are perpendicular to each other (p = 90 ° 
geometry). 

A general formula for the polarization factor for a 
system of one monochromator plus specimen has been 
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derived by Azfiroff (1955), but extension of this 
formula to a system containing more than one 
pre-specimen reflector becomes complex if the 
generality is maintained (Vincent, 1982). However, if 
the system consists of pre-specimen reflectors with the 
two special geometries mentioned above - the usual 
cases - then it is possible to derive the polarization 
factor for a beam reflected rn times in a straight- 
forward way. It is the purpose of this note to indicate 
the method of derivation of such a formula for an 
unpolarized beam of X-rays and also to show the form 
of the equation for a plane-polarized beam, the latter 
having possible applications in synchrotron radiation 
experiments. 

Unpolarized beam 

Let there be m reflectors of which the first m - 1 are 
pre-specimen reflectors with geometries restricted to 
p = 0 or 90 ° and the mth is the specimen with 
unrestricted values of p. Assume initially that all 
reflectors are ideally mosaic. The incident beam of 
X-rays  on the first reflector is unpolarized and hence 
may be resolved into two equal, mutually perpen- 
dicular components so that one component (a) lies in 
the diffraction plane and the other (n) normal to it, 
these components describing the directions of polariz- 
ation of the beam. This definition implies that for the 
p = 0 ° geometry the a component lies parallel to the 
normal to the scattering planes and the n component in 
the planes, and vice versa for the p = 90 o geometry. It 
follows therefore that the orientation of the first 
reflector is explicitly defined as in the p = 0 o geometry 
and hence the orientations of the remaining reflectors 
are all relative to this case. Thus for the other m - 2 
pre-specimen reflectors this is according to whether 
their diffraction planes lie parallel or perpendicular to 
the diffraction plane of the first reflector. For the 
specimen the angles of p are general, but still relative to 
the first reflector, being given by the Azhroff  (1955) 
definition. 

On expressing the beam in terms of the amplitude of 
the electric vector E 0, it may be shown that, with the 
above conditions, the contributions to the intensity 
from the o and n components after the ith reflection in 
terms of the intensity just before it, are given by 

tEE = k2 i_ lEE (cosE 20i cos2 pi + sinE pi) (1) 

and 

t E ]  = k2 i - l  E ] (  c°s2 20/sin2 Pt + cos2 Pt), (2) 

- -  - ~  = -~oo / 2 . k i is a where 1 < i < m and 0 E ]  = 0E~ 
constant for each reflector and 20~ is the angle between 
the incident and reflected beams. The terms in brackets 
in (1) and (2) account for the component that is normal 
to the scattering planes being attenuated by cos 20 on 

reflection. The resultant contribution to the intensity 
from both components after the ith reflection is given 
by their sum: 

E 2= ,.E 2~ + iE~ (3) 

and hence E 2 may be determined in terms of E02 from 
these relationships.* It will be seen from (3) that the 
choice of p -- 0 or p = 90 o to define the geometry of the 
first reflector becomes arbitrary. Moreover, adding 90 o 
to Pt for all reflectors merely interchanges the directions 
of the a and zc components relative to the first reflector. 

The last step is to express the final intensity in terms 
of the intensity just before the mth reflection. This is the 

2 2 which is related to the beam intensities ratio E m/E m_ I, 
by 

2 2 (4) Im/Im- 1 = E m / E m -  l" 

Equation (4) may be written as 

Im = KIm-  1 Pro, 

where Pm, the polarization factor for a beam reflected m 
times, is 

Pm:[  
i=1 

( c°s2 20/c°s2 Pi + sin2/9i) 

+ 1~ (cos 2 20is in2 Pi + cos 2 Pi)] 
i=1 

m-1 
x I-I (cos 2 20i cos 2 Pi + sin2 Pi) 

i=1 
m-I ]-1 

+ I-I (cos 2 20i sin 2 Pi + cos2 Pi) (5) 
i=1 

from an appropriate use of the above equations, and.  
/ c =  

Equation (5) is entirely a function of cos 2 20 i (with 
Icos 20/I replacing cos 2 20 i for those reflectors 
considered ideally perfect) if the reflections from the 
specimen are also measured in either of the two special 
geometries (the case with diffractometers). However, 
for data  collected on films or with area detectors, Pm 
varies from reflection to reflection and therefore the 
ruth term in (5) will be a function of p,,, as well. 
Methods of calculating Pm for various film techniques 

* Only if the pre-specimen reflectors are of the p = 0 or 90 ° 
geometries and the specimen (with general values of p) is the last 
reflector, will equations (1) to (3) be applicable since the 
components o and z~ remain orthogonal on reflection up to - but not 
necessarily including - the last reflection. It can be shown (Vincent, 
1982) that if i-~Eo and l-~E~ are orthogonal the angular deviation 
of tEo from i-~Eo projected onto a plane normal to the diffraction 
plane is given by cos 6 = (cos 2 Pt c o s  2~ i + sin 2 pi)(COS 2 Pi COS220t + 
sin 2 pf) -m. A similar expression for Y, the deviation of ~E from 
i-IE~, is obtained by interchanging cos 2 Pi and sin 2 Pi. It is evident 
that both 6 and 7 are zero when Pt = 0 or 90 °, but non-zero for 
general values ofpt. 
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have been discussed by, for example, Arndt & Sweet 
(1977), Buerger (1967) and Whittaker (1953). 

In principle, X-rays reflected off focusing mirrors or 
mirror monochromators will also suffer from polariz- 
ation effects. However, the critical angle 8¢ for total 
reflection of X-rays is so small (Witz, 1969) that 
cos 2 28 c ~ 1 and hence their contribution to p,, can be 
neglected. 

Plane-polarized beam 

It is worth considering the form of Pm for a plane- 
polarized beam under the same conditions as stated in 
the previous section, as it may have some relevance to 
synchrotron radiation experiments. With this type of 
source it is possible to achieve a working beam which is 
almost plane-polarized (to within ~ 1%, European 
Synchrotron Radiation Facility, 1979). For the present 
purposes it will be considered completely plane- 
polarized with E 0 lying, as it does, in the electron orbital 
plane. In terms of E~ and E~, this means that the 
magnitude of one of these components is zero and the 
other is parallel and equal to E 0. Although some of the 
previous relationships for an unpolarized beam are no 
longer valid here, the form of (4) and hence (5) allows 
the elimination of the zero component directly. 

Equation (5) may be rewritten as 

mP a + mP,~ 

P m =  m -  1Po + m- IP~ ' (6) 

where P~ and P~ refer to the contributions to Pm from 
the components a and zr respectively. Taking the tr 
component as being zero, (6) reduces to 

mP,r 

Pm -- m- 1P,~ 

or, more explicitly, 

l~l cOS2 28i sin2 Pi + c°s2 Pi) 
i=1 

Pm = 
m - - i  

1--[ (cos 2 28i s in2 Pi + c°s2 Pi) 
i=1 

= cos 2 28,, sin 2 Pm + c°s2 tim" (7) 

(Alternatively, for zero contribution from the n 
component, Pm = c°s2 28m COS2 Pm+ sin2 Pro" It is clear 
that a knowledge of the direction of E 0 relative to the 
first reflector is necessary.) 

Hence, for a plane-polarized beam, the polarization 
factor is independent of the polarization effects of the 

pre-specimen reflectors with the important conse- 
quence that the state of perfection of crystal mono- 
chromators used in the experiment need no longer be of 
concern (Vincent & Flack, 1980). Moreover, when 
Pm -- 0° in (7)Pm = 1, implying no correction for 
polarization effects whatsoever (as realized by Tem- 
pleton, Templeton, Philips & Hodgson, 1980; indeed it 
is the ideal case). Similarly, when Pm ---- 90° ,  Pm = 

cos 2 28 m, implying a correction equal to 1/cos 2 28 m. 
Other aspects of these two cases have been discussed 
by Vincent & Flack (1980). General values of Pm 
are calculated according to the measuring technique 
adopted (see above). 

In summary, the reciprocal of (5) is the expression to 
be used to correct data for polarization effects for an 
unpolarized beam reflected m times. It has been shown 
that the influence of focusing mirrors, for example, on 
Pm is small enough for them to be neglected from the 
calculation. Hence Pm is generally only dependent on 
polarization effects from crystal monochromators and 
the specimen, giving typical values for m of 2 or 3. It 
has also been shown that, for a plane-polarized beam, 
Pm is a function of the polarization effects of the 
specimen alone (7) and therefore a knowledge of the 
state of perfection of crystal monochromators - a 
problem in accurate work - is not required. The 
relevance of (7) to synchrotron radiation experiments 
has been pointed out, but a correct application depends 
on how near the working beam is to being completely 
plane-polarized. 

Grateful thanks are due to Professor M. Renninger 
for useful communications on the subject. 
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